Reasons for urgent termination of physical activity

Box 2 Reasons to stop physical activity and consult a healthcare provider

- Persistent excessive shortness of breath that does not resolve on rest.
- Severe chest pain.
- Regular and painful uterine contractions.
- Vaginal bleeding.
- Persistent loss of fluid from the vagina indicating rupture of the membranes.
- Persistent dizziness or faintness that does not resolve on rest.

Preventative Role of Prenatal Physical Activity on Common Health Conditions

Margie H. Davenport, PhD

Christenson Professorship in Active Healthy Living Women and Children's Health Research Institute Alberta Diabetes Institute www.exerciseandpregnancy.ca

Overview

- Describe the risk factors and prevalence of common discomforts and health conditions in pregnancy.
- Explain the preventative role of prenatal physical activity in relation to common pregnancy complications.

Incredible adaptations to normal pregnancy

↑ Insulin Resistance
 ↓ Glucose Availability
 ↑ Resting VO₂

Metabolic

↑ Resting Ventilation (+30-50%)
 ↓ Arterial CO₂ (-15-20 Torr)
 ↓ Bicarbonate (-5mEq/L)
 ↑ Chemoreflex Sensitivity
 (HCVR +100%; HVR +100%)

Respiratory

↑ Heart Rate (+20%)
↑ Blood Volume (+50%)
↑ Stroke Volume (+20-30%)
↑ Cardiac Output (+30%)
↓ Vascular Resistance (-20%)
↔↓ Blood pressure

Cardiovascular

Davenport, Skow and Steinback 2016. Clin Obstet & Gynecol

Not all pregnancies progress smoothly

85% of women will become pregnant in their lifetime

20% of women will develop complications during pregnancy that impact current & future cardiovascular health

Q Ø Q Q Q Q Q Q Q 0 Q Q \bigcirc \bigcirc Q Q Q Q Q Q Q Q Ø $\bigcirc \bigcirc \bigcirc \bigcirc$ Ø Q Q Q Q Ø Ø Q Q Q Q Q Q Q Q \bigcirc \bigcirc \bigcirc Q Ø Q Q Q Q Ø Õ Ø Õ Q Q \bigcirc Ø Q Õ Ŏ Õ Õ Ø 0 0 \bigcirc Q Õ Õ 0 0 0 0 0

Pregnancy is a stress test for life!

Implications / Complications

Table 2. Summary Estimates of Random-Effects Likelihood Meta-Analyses by Pregnancy Complication

			Primary Ana	lysis		Sensitivity Analyses [†]				
Pregnancy Complication	Study Design	No. Studies	Pooled Odds Ratio (95% ICI)	l², %	Tau²	No. Studies	Pooled Odds Ratio (95% ICI)	l², %	Tau²	
Cardiovascular-related morbidity*										
Gestational hypertension	Cohort	9	1.67 (1.28–2.19)	83.9	0.102	7	1.87 (1.55–2.25)	60.6	0.035	
Moderate preeclampsia	Cohort	16	2.24 (1.72–2.93)	95.0	0.176	11	1.97 (1.74–2.22)	65.9	0.021	
Severe preeclampsia	Cohort	6	2.74 (2.48–3.04)	0	0	-	-	-	-	
Preterm birth	Cohort	12	1.63 (1.39–1.93)	91.1	0.036	10	1.66 (1.48–1.86)	74.4	0.014	
S Hypertensive disorders of pregnancy P increases risk of cardiovascular morbidity/mortality C L OR1.63-2.95										
Preeclampsia	Cohort	9	1.73 (1.46–2.06)	60.6	0.035	-	-	-	-	
Preterm birth	Cohort	4	1.93 (1.83–2.03)	0	0	-	-	-	-	
Stillbirth	Cohort	4	2.23 (1.90–2.62)	0	0	-	-	-	-	
Cerebrovascular-related morbid	lity									
Gestational hypertension	Cohort	4	1.83 (0.79–4.22)	98.4	0.459	3	1.41 (1.31–1.52)	0	0	
Preeclampsia	Cohort	9	2.95 (1.10–7.90)	99.4	1.403	4	1.43 (1.36–1.50)	0	0	
Ischemic heart disease										

CVD indicates cardiovascular disease; and ICI, intrinsic confidence interval.

*Including coronary artery disease, myocardial infarction, coronary revascularization, peripheral arterial disease, transient ischemic attack, and stroke.

+Studies were excluded based on the use of composite outcomes with less severe forms of CVD (ie, unstable angina, thrombosis) or use of self-report to define exposure.

Circulation 2019 139:1069-1079

Cardiovascular disease unmasked

Effectiveness-Based Guidelines for the Prevention of Cardiovascular Disease in Women--2011 Update: A Guideline From the American Heart Association Lori Mosca, Emelia J. Benjamin, Kathy Berra, Judy L. Bezanson, Rowena J. Dolor, Donald M. Lloyd-Jones, L. Kristin Newby, Ileana L. Piña, Véronique L. Roger, Leslee J. Shaw, Dong Zhao, Theresa M. Beckie, Cheryl Bushnell, Jeanine D'Armiento, Penny M. Kris-Etherton, Jing Fang, Theodore G. Ganiats, Antoinette S. Gomes, Clarisa R. Gracia, Constance K. Haan, Elizabeth A. Jackson, Debra R. Judelson, Ellie Kelepouris, Carl J. Lavie, Anne Moore, Nancy A. Nussmeier, Elizabeth Ofili, Suzanne Oparil, Pamela Ouyang, Vivian W. Pinn, Katherine Sherif, Sidney C. Smith, Jr, George Sopko, Nisha Chandra-Strobos, Elaine M. Urbina, Viola Vaccarino and Nanette K. Wenger

Table 2. Classification of CVD Risk in Women

Risk Status	Criteria						
High risk (≥1	Clinically manifest CHD						
high-risk states)	Clinically manifest cerebrovascular disease						
	Clinically manifest peripheral arterial disease						
	Abdominal aortic aneurysm						
	End-stage or chronic kidney disease						
	Diabetes mellitus						
	10-y Predicted CVD risk \geq 10%						
At risk (≥1 major	Cigarette smoking						
risk factor[s])	SBP \geq 120 mm Hg, DBP \geq 80 mm Hg, or treated hypertension						
	Physical inactivity						
	History of preeclampsia, gestational diabetes, o pregnancy-induced hypertension						

Can we prevent them from developing?

Emerging risk factors: preterm delivery, small baby

Exercise as an Intervention to Promote Cardiovascular Health

Sattar and Greer BMJ 2002

No. 367, November 2018 (Replaces No. 129, June 2003, Reaffirmed February 2018)

No. 367-2019 Canadian Guideline for Physical Activity throughout Pregnancy

This Clinical Practice Outdelline has been prepared by the Guidelines Comensus Panet, reviewed by the Society of Obstetricians and Gynaecologists of Canada (SOGO)'s Matemal Fetal Medicine and Guideline Management and Oversight Committees, and approved by the Board of the SOGC, and the Board of Directors of the Canadian Society for Exercise Physiology (CSEP).

Michelle F. Mottola, PhD, London, ON Margie H. Davenport, PhD, Edmonton, AB (Chair)* Stephanie-May Ruchat, PhD, Trois-Rivières, OC Gregory A. Davies, MD. Kingston, ON Veronica Poitras, PhD, Ottawa, ON Casey Gray, PhD, Ottawa, ON Alejandra Jaramilo, MSc. Ottawa, ON Nick Barrowman, PhD, Ottawa, ON Kristi B. Adamo, PhD. Ottawa, ON Mary Duggan, CAE, Ottawa, ON Ruben Barakat, PhD, Madrid, Spain Phil Chilibeck, PhD, Saskatoon, SK Karen Fleming, MD, Toronto, ON Milena Forte, MD, Toronto, ON Jillian Korolnek, RM, Ontario Taniya Nagpal, BSc, London, ON Linda Slater, MLIS, Edmonton, AB Deanna Stirling, BSdN, London, ON Lori Zehr, PhD, Victoria, BC *Denotes joint first authorship

MATERNAL, FETAL MEDICINE COMMITTEE: Hayley Bos, MD, Victoria, BC (co-chair), Richard Brown, Beaconsfield, OC; Ermanuel Bujold, MD, Quebec, OC; Shery (Choo, MD, London, ON; Venu Jain, MD, Edmonton, AB; Lias Kuachier, RN, Victoria, BC; Haetter Muntor, RN, Edmonton, AB; N, Liano ML, aod, MD, Haiflas, NS; Savas Merdogiou, MD, Winnipeg MB; William Mundie, MD, Windor ON (co-chair); Kristen Nilas, MD, Toroho, ON; Frank Sanderson, ND, Sairt John, NB; Jennifer Walsh, MD, Calgary, AB

KEY MESSAGES

- Exercise reduces the risk of common pregnancy complications.
 Proviously inactive women can safely start exercise with the goal of activelying the recommended minimum activity. Exercise can be initiated at any point during pregnancy.
- Al types of physical activity contribute to a woman's fitness during pregnancy. Activities as simple as welling can reduce pregnancy complications. Aerobic exercise plus other types of exercise (e.g., resistance training) contribute to fitness.
- Women can achieve the recommended physical activity in this guideline in many ways, including activities, such as walking, that have no added expense.
- When exercising women should be cautious of activities where falling or direct physical contact may result in harm to themselves of their fetus.

J Obstet Gynaecol Can 2018;000(000); 1-10

https://doi.org/10.1016/j.jogc.2018.07.001

© 2018 Published by Elsevier Inc. on behalf of Society of Obstetricians and Gynaecologists of Canada.

The following organizations have reviewed this document and endorse the Joint SOGC/CSEP Canadian Guidelines for Physical Activity throughout Pregnancy:

Alberta Health Services -- Healthy Families and Children • Canadian Academy of Sports Medicine • Canadian Association of Midwives
 Directorate for Chief Medical Officer and Chief Scientist Office of Scotland • Exercise is Medicine Canada • Ontario Public Health Association
 ParticipACTION • Perinatal Services BC • Sociedad Espanola de Ginecología y Obstetricia (The Spanish Society of Gynecology and
 Obstetricia)

This article is being co-published in the British Journal of Sports Medicine (citation forthcoming). This document reflects emerging clinical and scientific advances on the date issued and is subject to change. The information should not be construct as didulating an exclusive courte of treatment or procedure to be followed. Local institutions can dictate amendments to these opinions. They should be well-documented if modified at the local level. None of these contents may be reproduced in any form without price write pormission of the publisher.

Women have the right and responsibility to make informed decisions about their care in partnership with their health care providers. In order to facilitate informed choice, women should be provided with information and support that is evidence based, culturally appropriate, and tailored to their needs. The values, beliets, and individual needs of each woman and their family should be sought, and the final decision about the care and treatment options chosen by the woman should be respected.

000 JOGC 000 2018 • 1

Co-published in Journal of Obstetricians and Gynaecologists Canada (English and French) & British Journal of Sports Medicine. www.csep.ca/guidelines

The evidence

- 12 systematic reviews
- Key evidence follows
- "critical" and "important" outcomes not presented generally found no impact of physical activity or had a lack of available information

GDM – what is it?

- Glucose intolerance with first diagnosis during pregnancy
- Affects 3-20% of pregnancies
- If left untreated can increase the risk
 - Fetal malformations
 - Macrosomia (birthweight >4,000g)
 - Cesarean section

- Other pregnancy complications including preeclampsia
- Future risk of type 2 diabetes in the mother
- Future risk of obesity and diabetes in the offspring

www.guidelines.diabetes.ca

Horvath et al. BMJ 2010; Kim et al. Dia Care 2002;25:1862-1868

Metabolism

- Glucose is the major source of nutrition for fetus
- Pregnancy is a state of progressive maternal insulin resistance
- Cannot compensate for the insulin resistance by increased production of insulin
- Hyperglycemia develops

Risk to the baby

- Glucose crosses the placenta but insulin doesn't
 Fetus makes it's own
- High levels of glucose (eg. GDM) overworks the fetal pancreas
- Insulin drives fat synthesis stores the excess energy as fat
- macrosomia

GDM Risk Factors

- Family history of diabetes
- Personal history of GDM (30-50% recurrence) or glucose intolerance
- Pre-pregnancy BMI <u>></u>30kg/m²
- Previous delivery of baby >4kg
- Age >35 years
- Ethnicity (Indigenous, Asian)

GDM Screening and Management

- Universal screening for GDM occurs between 24 and 28 weeks gestation
 - Low risk 50g glucose challenge
 - Higher risk fasted 75g oral glucose tolerance test
- Test blood sugars fasted and after meals
- Nutrition and lifestyle
- If blood glucose targets are not achieved in 1-2 weeks, pharmacological treatment is started

www.guidelines.diabetes.ca

- Insulin
- metformin

Prenatal exercise reduces the odds of:

Gestational diabetes mellitus by 38%

Diabetes during Pregnancy: how exercise can help!

Hypertensive Disorders of Pregnancy

- What are they?
- How are they diagnosed?
- Impact on mother and baby.
- Prevention and management of HDP.

Hypertensive disorders of pregnancy

- Occur in ~7% of pregnancies in Canada
- Risk factors first degree relative with hypertension, obesity, diabetes, chronic hypertension, multiple gestation, older age (35+)
- Associated with fetal growth restriction, preterm delivery, fetal morbidity / mortality
- Independent risk factor for future cardiovascular disease
 - gestational hypertension 70%
 - severe preeclampsia with fetal death 440%

What causes preeclampsia?

- Several theories these are most prevalent
 - Placental defect
 - Abnormal placentation
 - Genetic vs. inflammatory
 - Maternal maladaptation
 - Endothelial dysfunction
 - Sympathetic activation
- Signs and symptoms
 - Headaches
 - Tinnitus (ringing in ears)
 - Blurred vision

Risk to the baby

- Growth restriction, premature birth, fetal death
- Lifelong risk of obesity, diabetes, cardiovascular disease
- Prevention and treatment are key

Treatment

- Currently bed rest is not supported but hospitalization may be required
- Antihypertensive medication in non-severe hypertension (140-159/90-109mmHg) was associated with a decreased risk of progression to severe hypertension (>160/110)

Labetalol, methyldopa, other beta-blockers

- Severe hypertension is considered an obstetrical emergency requiring urgent anti-hypertensive therapy
- The only "cure" is delivery

Canadian Journal of Cardiology 2018 34, 526-531DOI: (10.1016/j.cjca.2018.02.021) Hypertension.

Prevention

No. 307, May 2014 (Replaces No. 206, March 2008)

Diagnosis, Evaluation, and Management of the Hypertensive Disorders of Pregnancy: Executive Summary

- A leading cause of maternal/fetal morbidity and mortality
- Prevalence of hypertensive disorders of pregnancy are rising
- Women at high risk for developing preeclampsia may be prescribed low-dose aspirin, calcium (if have low dietary intake), heparin or others by their health care provider
- Insufficient evidence on other preventative therapies

Prenatal exercise reduces the odds of:

Gestational hypertension by 39% Preeclampsia by 41%

https://youtu.be/cKOzlirZqAU

Pregnancy and Hypertension: how exercise can help!

Considerations for exercise

- Women at risk of hypertension may benefit from exercise
- Preeclampsia is an absolute contraindication and women are recommended to avoid strenuous physical activity
 - Activities of daily living may be continued
- Gestational hypertension is a relative contraindication
 - Patient and obstetric care provider need to discuss benefits vs. harms of exercise
- Controlled chronic hypertension is not a contraindication

https://youtu.be/cKOzlirZqAU

Pregnancy and Hypertension: how exercise can help!

Effectiveness-Based Guidelines for the Prevention of Cardiovascular Disease in Women--2011 Update: A Guideline From the American Heart Association

Lori Mosca, Emelia J. Benjamin, Kathy Berra, Judy L. Bezanson, Rowena J. Dolor, Donald M. Lloyd-Jones, L. Kristin Newby, Ileana L. Piña, Véronique L. Roger, Leslee J. Shaw, Dong Zhao, Theresa M. Beckie, Cheryl Bushnell, Jeanine D'Armiento, Penny M. Kris-Etherton, Jing Fang, Theodore G. Ganiats, Antoinette S. Gomes, Clarisa R. Gracia, Constance K. Haan, Elizabeth A. Jackson, Debra R. Judelson, Ellie Kelepouris, Carl J. Lavie, Anne Moore, Nancy A. Nussmeier, Elizabeth Ofili, Suzanne Oparil, Pamela Ouyang, Vivian W. Pinn, Katherine Sherif, Sidney C. Smith, Jr, George Sopko, Nisha Chandra-Strobos, Elaine M. Urbina, Viola Vaccarino and Nanette K. Wenger

Table 2. Classification of CVD Risk in Women

Risk Status	Criteria				
High risk (≥1	Clinically manifest CHD				
high-risk states)	Clinically manifest cerebrovascular disease				
	Clinically manifest peripheral arterial disease				
	Abdominal aortic aneurysm				
	End-stage or chronic kidney disease				
	Diabetes mellitus				
	10-y Predicted CVD risk \geq 10%				
At risk (≥1 major	Cigarette smoking				
risk factor[s])	SBP \geq 120 mm Hg, DBP \geq 80 mm Hg, or treated hypertension				
	Physical inactivity				
	History of preeclampsia, gestational diabetes, or pregnancy-induced hypertension				

Pregnancy unmasks future chronic disease risk.

If prenatal exercise reduces gestational diabetes and preeclampsia, long term risk for cardiovascular disease may be decreased.

Gestational weight gain

https://www.canada.ca/content/dam/hc-sc/migration/hc-sc/fn-an/alt_formats/pdf/nutrition/prenatal/hwgdp-ppspg-ene

Preconception body mass index and gestational weight gain

Prepregnancy BMI	BMI+ (kg/m²) (WHO)	Total Weight Gain Range (lbs)	Rates of Weight Gain* 2nd and 3rd Trimester (Mean Range in Ibs/wk)
Underweight	<18.5	28–40	1 (1–1.3)
Normal weight	18.5-24.9	25–35	1 (0.8–1)
Overweight	25.0-29.9	15–25	0.6 (0.5–0.7)
Obese (includes all classes)	≥30.0	11–20	0.5 (0.4–0.6)

- + To calculate BMI go to www.nhlbisupport.com/bmi/
- * Calculations assume a 0.5–2 kg (1.1–4.4 lbs) weight gain in the first trimester (based on Siega-Riz et al., 1994; Abrams et al., 1995; Carmichael et al., 1997)

IOM Weight Gain During Pregnancy: Reexamining the Guidelines, 2009

Inadequate vs. Excessive Weight Gain

Excessive

- Gestational diabetes mellitus
- Hypertensive disorders of pregnancy
- Cesarean delivery
- Preterm delivery
- Large for gestational age baby

Inadequate

Small for gestational age

	Exerc	ise	Cont	rol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight I	I-H, Random, 95% CI	M-H, Random, 95% Cl
1.3.2 Exercise + co-intervention							
Dodd, 2014	148	1080	120	1073	6.8%	1.26 [0.98, 1.63]	-
Guelinckx, 2010 - Active	3	65	1	65	0.4%	3.10 [0.31, 30.58]	
Harrison, 2013	27	121	35	107	3.8%	0.59 [0.33, 1.06]	
Hui, 2006	1	24	2	21	0.4%	0.41 [0.03, 4.91]	
Hui, 2012	2	102	3	88	0.7%	0.57 [0.09, 3.47]	
Hui, 2014 - OW/OB	1	27	3	29	0.4%	0.33 [0.03, 3.42]	
Jing, 2015	26	115	37	106	3.7%	0.54 [0.30, 0.98]	
Kolvusalo, 2016	20	144	27	125	3.4%	0.59 [0.31, 1.11]	
Luoto, 2011	34	216	22	179	3.8%	1.33 [0.75, 2.37]	+
Petrella, 2014	7	33	16	28	1.5%	0.20 [0.07, 0.62]	
Phelan, 2011 - NW	8	90	6	92	1.6%	1.40 [0.47, 4.20]	
Phelan, 2011 - OW/OB	11	81	7	86	1.8%	1.77 [0.65, 4.82]	
Polley, 2002 - NW	0	30	2	31	0.2%	0.19 [0.01, 4.20]	+
Polley, 2002 - OW/OB	2	27	1	22	0.4%	1.68 [0.14, 19.85]	· · ·
Poston, 2015	160	629	172	651	6.9%	0.95 [0.74, 1.22]	+
Rauh, 2013	8	156	9	79	1.9%	0.42 [0.16, 1.14]	
Renault, 2014 - Diet + Exercise	6	103	4	67	1.2%	0.97 [0.26, 3.59]	
Sagedal, 2017	32	296	25	295	4.0%	1.31 [0.76, 2.27]	+
Simmons, 2015 - Diet + Exercise	11	35	5	18	1.3%	1.19 [0.34, 4.18]	
Simmons, 2016 - Exercise + Diet	27	84	18	47	2.8%	0.76 [0.36, 1.61]	
Smith, 2016	1	24	2	21	0.4%	0.41 [0.03, 4.91]	
Stafne, 2012	25	375	18	327	3.5%	1.23 [0.66, 2.29]	_
Vesco, 2014	6	56	7	58	1.5%	0.87 (0.27, 2.78)	
Vinter, 2011	9	150	8	154	1.9%	1.16 (0.44, 3.10)	
Subtotal (95% CI)		4003		3769	54.3%	0.90 [0.74, 1.10]	·
Total events	575		550				
Heterogeneity: Tau ² = 0.05; Chi ² = 3	2.70, df=	23 (P =	0.09); P	= 30%			
Test for overall effect: Z = 1.03 (P = 0	0.30)						
Total (95% CI)		7568		7198	100.0%	0.76 [0.65, 0.88]	•
Total events	846		930				
Heterogeneity: Tau ² = 0.07: Chi ² = 7	2.72, df=	50 (P =	0.02); P	= 31%			
Test for overall effect Z = 3.56 (P = 0	0.0004)						0.01 0.1 1 10 100
Test for subgroup differences: Chi#	= 7.40, df	= 1 (P =	0.007)	P= 86	.5%		Pavours exercise Pavours no exercise

Excessive gestational weight gain

	Experim	ental	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
10.1.1 Exercise only							
16741 - Ruiz, 2013 - NW	42	335	78	352	4.4%	0.50 [0.33, 0.76]	
16741 - Ruiz, 2013 - OW/OB	72	146	76	129	3.9%	0.68 [0.42, 1.09]	
16780 - Renault, 2014 - Exercise	64	125	42	67	3.1%	0.62 [0.34, 1.15]	
18056 - Perales, 2015	7	38	11	25	1.3%	0.29 [0.09, 0.90]	
31761 - Haakstad, 2011	17	52	20	53	2.1%	0.80 [0.36, 1.79]	
31986 - Ronnberg, 2015	79	192	91	182	4.4%	0.70 (0.46, 1.05)	
32014 - Ussher 2015	30	74	24	66	2.7%	1 19 [0 60 2 36]	I
33043 - Barakat 2016	101	382	131	383	5.2%	0.69/0.51/0.941	I
33074 - Garnaes 2016	21	36	16	36	1 7%	1 75 [0 69 4 45]	I
50068 - Simmons 2016 - Evercise	59	76	30	40	1 0 %	1.07 [0.44, 2.62]	
Parakat 2014	20	107	21	40	2.000	0.62 [0.44, 2.02]	
Dalakat, 2014	22	107	17	33	2.3%	0.02 [0.27, 0.86]	
Disson, 2015	21	24		450	0.0%	2.00 [0.00, 12.07]	
Codero, 2015	23	101	54	150	3.3%	0.56 [0.31, 0.99]	
Kong, 2014 - OB	(9	8	10	0.4%	0.88 [0.10, 7.95]	
Kong, 2014 - OW	4	9	5	9	0.5%	0.64 [0.10, 4.11]	
Nascimento, 2011	19	40	24	42	1.9%	0.68 [0.28, 1.62]	
Perales, 2015	24	52	36	54	2.2%	0.43 [0.20, 0.94]	
Subtotal (95% CI)		1798		1721	42.6%	0.68 [0.57, 0.80]	•
Total events	611		694				
Heterogeneity: Tau ² = 0.01; Chi ² = 18.19, df	= 16 (P = 0	0.31); I ^e =	= 12%				
Test for overall effect: Z = 4.64 (P < 0.00001)						
10.1.2 Exercise plus co-intervention	76	400		407	2.00	0.0010.44.4.601	
31713 - Althuizen, 2013	/5	103	82	107	3.0%	0.82 [0.44, 1.52]	
31715 - Jing, 2015	102	115	97	106	1.8%	0.73 [0.30, 1.78]	
31941 - Petrella, 2014	11	33	17	28	1.4%	0.32 [0.11, 0.92]	
32174 - Ferrera, 2011	25	91	30	98	2.9%	0.86 [0.46, 1.61]	
32198 - Kinnunun, 2012	101	219	92	180	4.5%	0.82 [0.55, 1.22]	
32228 - Polley, 2002 - NW	10	30	18	31	1.5%	0.36 [0.13, 1.02]	
32228 - Polley, 2002 - OW/OB	16	27	7	22	1.2%	3.12 [0.96, 10.15]	
32230 - Phelan, 2011 - NW	37	92	49	94	3.2%	0.62 [0.35, 1.10]	
32230 - Phelan, 2011 - OW/OB	58	87	55	90	3.0%	1.27 [0.69, 2.35]	
33145 - Sagedal, 2017	111	279	133	278	5.0%	0.72 [0.51, 1.01]	
33155 - Smith, 2016 - 34 to 36 weeks	15	22	11	21	1.1%	1.95 [0.56, 6.73]	
50068 - Simmons, 2016 - Diet + Exercise	45	75	30	40	2.0%	0.50 [0.21, 1.17]	
60010 - Dodd. 2014	380	897	368	871	6.2%	1.00 (0.83, 1.21)	+
60011 - Vesco, 2014	24	56	47	58	2.0%	0.18 (0.08, 0.41)	
Guelincky 2010	17	42	20	43	2.0%	0.78 (0.33, 1.85)	
Hui 2006	5	24	7	21	1.0%	0.53 [0.14, 2.01]	
Hui, 2000	26	102	40	82	3,704	0.45 [0.14, 2.01]	
Hui 2014 - NM		20	40	27	0.2.20	0.43 [0.23, 0.02]	
Hui 2014 - NWOR	10	20	20	20	1.20/	0.13 [0.00, 0.78]	
Hui, 2014 - UWUB	18	21	20	29	1.3%	0.90 [0.29, 2.76]	1
Raun, 2013 Demonit 2014 Dist. Exemples	58	152	44	/4	3.3% 3400	0.42 [0.24, 0.74]	
Renault, 2014 - Diet + Exercise	59	130	42	67	3.1%	0.49 [0.27, 0.90]	
Vinter, 2011 Subtotal (DEW CI)	51	144	69	148	3.9%	0.63 [0.39, 1.00]	
Subtotal (95% CI)	4055	2111	4005	2021	31.4%	0.00 [0.54, 0.82]	•
Total events	1257		1296				
Heterogeneity: Tau ² = 0.12; Chi ² = 50.53, df	= 21 (P = 0	J.0003);	If = 58%				
Test for overall effect: Z = 3.83 (P = 0.0001)							
Total (95% CI)		4575		4242	100.0%	0 68 [0 59 0 79]	•
Total evente	1060	4010	1000	10.76		0.00 [0.00, 0.70]	•
Heterezensity Teuß- 0.07: Ohit - 70.50 -46	1008 - 0070 -	0.0043-15	1990				
meterogeneity: raune 0.07; Chine 70.58, df	= 38 (P = l	0.001)(P	= 40%				0.01 0.1 1 10 100
Test for overall effect: ∠ = 5.36 (P < 0.00001)						Lower proportion in EX Lower proportion in CTRL
lest for subgroup differences: Chi ² = 0.02, (at=1 (P=	U.89), I²	= 0%				

Exercise reduces the risk of:

Gestational diabetes $\sqrt{38\%}$ Gestational hypertension $\sqrt{39\%}$ Preeclampsia $\sqrt{41\%}$ Excessive gestational weight gain $\sqrt{32\%}$

Prenatal depression

https://www.youtube.com/watch?v=WsBQ2cuXU2Y

- Affects~13% of pregnant women
 - Strongly predicts the development of postpartum depression
 - Standard treatment is pharmacological treatment and psychological intervention

Prenatal depressive symptoms

Study or Subgroup	E) Moon	ercise	Total	Moon	ontrol	Total	Moight	Std. Mean Difference	Std. Mean Difference
1.2.1 Exercise Only	Weall	30	TULAI	Weall	30	TULAI	weight	IV, Rahuolii, 95% Ci	IV, Kalidolli, 95% Cl
Devie 2015	0.05	2.00	20	7 22	5.00	4.0	2.400	0.04 0.04 0.401	
Davis, ZUIS Field 2012	0.30	3.99	20	1.32	0.00	19	3.4% 5.00/	-0.21 [-0.84, 0.42]	
Field 2013	20.12	0.0	40	10.27	10.10	39	3.0%	-0.00 [-0.90, -0.00]	
Field, 2012	20.12	10.01	11	19.27	10.12	21	2.770	0.00[-0.00], 0.01]	
Field, 2013 Qualfi 2016	23.5	205	37	23.9	11.4	30	2.0%	-0.04 [-0.49, 0.41]	
Mitchell 2010	3.00	2.90	44	4.40	0.33	07	7.0%	-0.19[-0.49, 0.11]	
Neuhom 2014	5.14	0.07	20	21.42	9.79	22	2.2%	-0.30[-1.21, 0.48]	
Newnam, 2014 Revolue 2015	5.14	3.80	400	0.77	4.82	4.24	3.9%	-0.37 [-0.93, 0.19]	
Perales, 2015 Berales, 2015	7.00	0.00	120	11.93	0.74	121	7.0%	-0.00 [-0.70, -0.24]	
Perales, 2015 Develop 2014	7.07	0.3	90	15.34	9.74	50	0.9% 5.50	-0.45 [-0.76, -0.14]	
Perales, 2014 Doblada Colonia, 2012	9.33	1.17	40	15.20	9.76	23	0.0% 4.70/	-0.08 [-1.09, -0.27]	
Robledo-Coloria, 2012	10	10	31	10	0	37	4.7%	-0.84 [-1.32, -0.30]	
Taniguchi, 2016 Uabalaakar, 2016	4.1	4.8	54 44	5.2	0.7	53	5.9%	-0.19[-0.57, 0.19]	
Subtotal (95% CI)	9.27	4.47	500	1.43	4.72	585	61 5%	-0.45[-1.41, 0.51]	
Hotorogonoity: Tou ² - 0.0	1.068-	12.44	J50 Jf = 10	/D = 0 2	SI	1100	01.570	-0.33 [-0.31, -0.20]	•
Test for overall effect: 7 -	5 98 (P a	: 0 000r	111	це <u>=</u> п		1.00			
restion overall ellect. 2 -	0.00 (i	. 0.0000	,						
1.2.2 Exercise plus co-in	terventi	on							
Choi, 2016	8.8	2.7	13	11.1	6.9	15	2.6%	-0.41 [-1.17, 0.34]	
Dodd, 2016	5.83	4.58	695	5.63	4.72	687	9.6%	0.04 [-0.06, 0.15]	+
Phelan, 2014	4.9	4.4	128	5	4	133	7.8%	-0.02 [-0.27, 0.22]	-+-
Poston, 2013	7.1	4.5	94	6.9	4.2	87	7.1%	0.05 [-0.25, 0.34]	_
Ussher, 2015	8	4.9	189	7.2	5	194	8.5%	0.16 [-0.04, 0.36]	+
Vieten, 2008	16.2	7.3	13	17.2	7.4	18	2.8%	-0.13 [-0.85, 0.58]	
Subtotal (95% CI)			1132			1134	38.5%	0.05 [-0.03, 0.13]	•
Heterogeneity: Tau ² = 0.0	0; Chi ² =	3.27, di	f= 5 (P	= 0.66)	; I ² = 0%				
Test for overall effect: Z =	1.13 (P =	= 0.26)							
Total (95% CI)			1722			1719	100.0%	-0.23 [-0.37, -0.09]	•
Heterogeneity: Tau ² = 0.0	5; Chi ² =	52.57.	df = 18	(P < 0.0	001); P	= 66%			- <u>t</u> t <u>t</u> t <u>t</u>
Test for overall effect: Z =	3.17 (P =	= 0.002)							
Test for subgroup differences: Chi ² = 31.67. df = 1 (P < 0.00001). I ² = 96.8%									Favours exercise Favours control

Exercise reduces the risk of:

Gestational diabetes $\sqrt{38\%}$ Gestational hypertension $\sqrt{39\%}$ Preeclampsia $\sqrt{41\%}$ Excessive gestational weight gain $\sqrt{32\%}$

Depressive symptoms = moderate

Prenatal depression

	Experim	ental	Cont	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
2.1.1 Exercise only							
Guelfi, 2016	1	85	3	87	3.8%	0.33 [0.03, 3.27]	
Haakstad, 2016	3	52	9	53	8.2%	0.30 [0.08, 1.18]	
Perales, 2015	10	83	16	59	13.5%	0.37 [0.15, 0.88]	_ _
Perales, 2014	7	44	25	53	12.2%	0.21 [0.08, 0.56]	_ _
Perales, 2015	11	90	19	77	14.3%	0.43 [0.19, 0.96]	
Subtotal (95% CI)		354		329	52.0%	0.33 [0.21, 0.53]	◆
Total events	32		72				
Heterogeneity: Tau ² =	0.00; Chi ²	'= 1.25,	df=4 (P	= 0.87)); I² = 0%		
Test for overall effect:	Z = 4.65 (F	° < 0.00	001)				
2.1.2 Exercise plus c	ointervent	tion					
Dodd, 2016	65	695	62	687	21.2%	1.04 [0.72, 1.50]	+
Phelan, 2014	8	128	10	133	12.3%	0.82 [0.31, 2.15]	
Poston, 2013	16	80	14	75	14.5%	1.09 [0.49, 2.42]	_ - }
Subtotal (95% CI)		903		895	48.0%	1.02 [0.75, 1.40]	•
Total events	89		86				
Heterogeneity: Tau ² =	0.00; Chi ^z	= 0.23,	df = 2 (P	= 0.89)); I² = 0%		
Test for overall effect:	Z = 0.13 (F	° = 0.89)				
Total (95% CI)		1257		1224	100.0%	0.55 [0.34, 0.90]	•
Total events	121		158			the fold if aloof	•
Heteroneneity: Tau ² =	0.25: Chi≊	= 16.90	130 1)7=10	P = 0.0°	2) [,] I≧ = 59	96	
Test for overall effect:	7 = 240 (F	= 10.38	λ.α.≃τ(}	- 0.0.	27,1 = 33	<i>70</i>	0.01 0.1 1 10 100
Test for subaroun diff	erences: C	:hi² = 15	, 548.df=	1 (P < 1	0 0001) F	² = 93.5%	Favours exercise Favours control

Exercise reduces the risk of:

Gestational diabetes ↓38% Gestational hypertension ↓39% Preeclampsia ↓41% Excessive gestational weight gain ↓32% Depressive symptoms = moderate

Depressive symptoms = moderate Depression $\sqrt{67\%}$

However....

- Prenatal exercise does not reduce the incidence or severity of postpartum depression
- Prenatal exercise did not alter the incidence or severity of anxiety during or following pregnancy
- Few studies, limited follow up
- BUT, re-starting exercise in the postpartum period has a protective effect on mental health.

Urinary incontinence

- Previously covered by Kari Bo
- Involuntary leakage of urine.
- Hormones and increased weight of the uterus can increase the risk of UI.
- Up to 75% of pregnant women experience UI, often persisting into the postpartum period.

Prenatal exercise reduces the odds of:

Prenatal urinary incontinence by 51% Postpartum urinary incontinence by 37%

Pregnancy and Urinary incontinence: how exercise can help!

https://youtu.be/E-65pYlG9hI

Lumbopelvic pain

- Lumbopelvic pain: pain arises from both the low back and the pelvis.
- Low back pain: below the ribs, but above the gluteal folds, with or without radiation down the legs
- Pelvic girdle pain: pain around the pubic and sacroiliac joints with our without radiate down the posterior thigh.

Girard et al J Manipulative Physiol Ther 2016

Prenatal exercise reduces the odds of:

Severity (but not development) of low back, pelvic girdle and lumbopelvic pain.

https://youtu.be/10f5shx3BU8

Pregnancy and Back Pain: how exercise can help!

Traditional concerns about prenatal exercise

- 1) Increase early pregnancy loss;
- 2) Premature delivery;
- 3) Increased core body temperature leading to congenital anomalies;
- 4) Fetal growth restriction

Miscarriage

	Exerci	se	Contr	ol		Odds Ratio	Odds Ratio
Study or Subaroup	Events	Total	Events	Total	Weiaht	M-H. Random. 95% Cl	M-H. Random, 95% Cl
1.2.1 Exercise only							
15952 - Bisson, 2015	0	25	1	25	1.0%	0.32 [0.01, 8.25]	
16660 - Petrov Fieril, 2015	1	51	1	41	1.4%	0.80 [0.05, 13.19]	
16780 - Renault, 2014 - Exercise	3	142	1	71	2.1%	1.51 [0.15, 14.79]	
18059 - Prabhu, 2015	0	52	0	53		Not estimable	
30284 - Erkkola, 1976	1	31	0	31	1.0%	3.10 [0.12, 79.04]	
31986 - Ronnberg, 2015	7	221	11	224	11.5%	0.63 [0.24, 1.66]	
32331 - Kihlstrand,1999	0	124	1	122	1.0%	0.33 [0.01, 8.06]	
32445 - Ussher, 2015	6	383	10	389	10.3%	0.60 [0.22, 1.68]	
33074 - Garnaes, 2016	3	46	3	45	3.9%	0.98 [0.19, 5.12]	
40398 - Guelfi, 2016	1	85	2	87	1.8%	0.51 [0.05, 5.69]	
Subtotal (95% CI)		1160		1088	34.0%	0.69 [0.40, 1.22]	◆
Total events	22		30				
Heterogeneity: Tau ² = 0.00; Chi ² = 2.04, df	= 8 (P = 0).98); I ^z	= 0%				
Test for overall effect: Z = 1.27 (P = 0.20)	- (* -						
, , ,							
1.2.2 Exercise plus co-intervention							
15082 - Guelinckx, 2010 - Active	2	65	2	65	2.7%	1.00 [0.14, 7.32]	
15310 - Luoto, 2011	6	246	8	196	9.3%	0.59 [0.20, 1.72]	
15704 - Vinter, 2011	1	180	4	180	2.2%	0.25 [0.03, 2.22]	
16780 - Renault, 2014 - Diet + Exercise	2	142	1	71	1.8%	1.00 [0.09, 11.22]	
18043 - Koivusalo, 2016	6	155	6	138	8.0%	0.89 [0.28, 2.81]	
18058 - Poston, 2015	18	783	14	772	21.5%	1.27 [0.63, 2.58]	
31715 - Jing, 2015	2	131	2	131	2.7%	1.00 [0.14, 7.21]	
31743 - Korpi-Hyovalti, 2012	2	27	2	27	2.6%	1.00 [0.13, 7.67]	
31968 - Jackson, 2011	6	158	1	163	2.4%	6.39 [0.76, 53.73]	
32177 - Hawkins, 2015	1	35	1	35	1.4%	1.00 [0.06, 16.65]	
32228 - Polley, 2002	1	61	2	59	1.8%	0.47 [0.04, 5.38]	
32230 - Phelan, 2011	3	201	3	200	4.1%	0.99 [0.20, 4.99]	
32282 - Kluge, 2011	1	26	1	24	1.3%	0.92 [0.05, 15.58]	
33145 - Sagedal, 2017	3	303	3	303	4.1%	1.00 [0.20, 4.99]	
Subtotal (95% CI)		2513		2364	66.0%	0.99 [0.66, 1.48]	•
Total events	54		50				
Heterogeneity: Tau ² = 0.00; Chi ² = 6.29, dt	= 13 (P =	0.94);	I ² = 0%				
Test for overall effect: Z = 0.07 (P = 0.95)							
Total (95% CI)		3673		3452	100.0%	0.88 [0.63, 1.21]	◆
Total events	76		80				
Heterogeneity: Tau ² = 0.00; Chi ² = 9.32, dt	= 22 (P =	0.99);	l² = 0%				
Test for overall effect: Z = 0.79 (P = 0.43)							Eawer in exercise Eawer in control
Test for subgroup differences: Chi ² = 0.99	. df = 1 (P	= 0.32), I ² = 0%				rewerni exercise i ewerni contitor

No increased risk, possible protective effect?

Same finding in other study designs.

Miscarriage

- 93,000 pregnant women in Danish National Birth Cohort (*Madsen 2007*).
 - High-volume or high-impact exercise in 1st trimester associated with increased risk of miscarriage.
 - » 7+ hours per week, running.
- BUT 2/3 of women were interviewed after having a miscarriage.
 - After restricting to women interviewed about exercise practice while pregnant exercise did not increase risk (*Nilsson 2014*).
 - » Recall bias after miscarriage?

Traditional concerns about prenatal exercise

- 1) Increase early pregnancy loss;
- 2) Premature delivery;
- 3) Increased core body temperature leading to congenital anomalies;
- 4) Fetal growth restriction

Why do we care about prematurity?

- Premature <37 weeks.
- 1 in 10 babies born premature worldwide.
- Short term:
 - Underdeveloped lungs
 - NICU
- Long term:
 - Cognitive impairments
 - Developmental delay
 - Chronic health issues

Premature	del	ivery
-----------	-----	-------

	Experim	ental	Cont	rol		Odds Ratio	Odds Ratio
Study or Subgroup	Evonte	Total	Luonte	Total	Woight	M H Pandom 05% Cl	M U Pandom 05% Cl
12.5.1 Exercise only							
13662 - Suputtitada, 2002	0	32	0	35		Not estimable	
13826 - Baciuk, 2008	2	33	3	37	0.8%	0.73 [0.11, 4.67]	
13838 - Barakat, 2009	2	/1	3	70	0.8%	0.65 [0.10, 4.00]	
14032 - Elden, 2008		130		129	2.4%	0.99 [0.34, 2.91]	
14962 - Dias, 2011	1	21	2	21	0.4%	0.47 [0.04, 5.68]	
15487 - Price, 2012	1	31	0	31	0.3%	3.10 [0.12, 79.04]	
15909 - Barakat, 2013 - All	6	138	11	152	2.6%	0.58 [0.21, 1.62]	
15912 - Barakat, 2014	4	107	4	93	1.4%	0.86 [0.21, 3.56]	
16203 - Grodsi, 2014	3	40	1	40	0.5%	3.16 [0.31, 31.78]	
16254 - Haise, 2015	3	20	2	20	0.8%	1.59 [U.24, 1U.70]	
16406 - Kong, 2014- OW	0	404	0	10	0.000	Not estimable	
16611 - NUDIES, 2015	11	124	11	123	3.0%	0.99 [0.41, 2.38]	
16741 - Ruiz, 2013 - NW	8	333	2	352	1.1%	4.28 [0.90, 20.31]	
16741 - Ruiz, 2013 - OWUOB	4	140	2	129	0.9%	1.79 [0.32, 9.93]	
16780 - Renault, 2014 48084 Tamia 2012	8	125	0	407	2.3%	0.70 [0.23, 2.09]	
10904 - TUMIC, 2013 10050 - Drobby 2015	14	107	9	107	3.0%	1.01 [0.08, 3.82]	
19054 Congrigation 2015	2	32	1	20	0.5%	2.00 [0.10, 23.07]	
18064 - Serieviraine, 2015 21570 - Centee, 2005	2	37	1	30	0.5%	1.00 [0.14, 19.21]	
31576 - Santus, 2005 31761 - Heaksteri, 3011	2	57	1	30	0.5%	1.94 [0.17, 22.43]	
31701 - Maakslau, 2011 31793 Avon: 1007	2	15		33	0.3%	2.00 [0.10, 23.07]	
22446 Licobor 2016	26	266	0	240	0.7%	1 26 IO 70 2 201	
22443 - Ossilei, 2013 22042 - Parakat 2016	27	200	20	240	0,7.0	1.33 [0.78, 2.30]	
23074 Gamage 2016	- 1	46	23	302	0.0%	0.0010.00.101210	
53074 - Gamaes, 2010 Poll 2000	1	40	1	40	0.3%	0.98 [0.00, 10.12]	
Class 2000	1	22	1	20	0.3%	1 10 00 00 10 04	
Kacawara 2012	11	55	19	53	2.6%	0.49 (0.00, 10.04)	
Kabawara, 2013 Kang 2014, OB	0	Q	10	G	5.0 %	Not estimable	
Taniguchi 2016	0	54	2	53	0.3%	0.19.00.01.4.031	←
Subtotal (95% CI)		2680	-	2603	48.6%	1.12 [0.88, 1.42]	•
Total events	168		145				ľ
Heterogeneity: Tau ² = 0.00; Chi ² = 15.11, df = 24	(P = 0.92);	I [≈] = 0%					
Test for overall effect: Z = 0.94 (P = 0.35)							
40.5.0 Examples when an intervention							
12.5.2 Exercise plus co-intervention			-				
14951 - de Barros, 2010	3	32	3	32	1.0%	1.00 [0.19, 5.37]	
15622 - Statne, 2012	20	429	19	426	6.6%	1.05 [0.55, 1.99]	
15704 - Vinter, 2011	5	82	2	/5	1.0%	2.37 [0.45, 12.60]	
15964 - Bo, 2014	3	101	6	99	1.4%	0.47 [0.12, 1.95]	
16707- Raun, 2013	4	156	5	79	1.5%	0.39 [0.10, 1.49]	
16780 - Renault, 2014 - Exercise + Diet	4	130	6	67	1.6%	0.32 [0.09, 1.19]	
18058 - Poston, 2015	45	761	48	/51	15.5%	0.92 [0.60, 1.40]	
30325 - Hollingsworth, 1987	0	12	U	8		Not estimable	
30325 - Hollingsworth, 1987 - Type 1 Diabetes	4	13	8	21	1.3%	0.72 [0.17, 3.14]	
31713 - Althuizen, 2013	6	103		107	2.2%	0.88 [0.29, 2.72]	
31941 - Petrella, 2014	0	33	10	28	0.3%	0.03 [0.00, 0.47]	
31968 - Jackson, 2011	22	158	18	163	6.2% 5.7%	1.30 [0.67, 2.53]	
33145 - Sagedal, 2016 Minustrati 2042	17	296	17	295	5.7%	1.00 [0.50, 1.99]	
Rholon 2011 OW/OR	10	74	5	09	1.9%	1.34 [0.40, 4.43]	
Phelan, 2011 - OWWOB	10	81	12	80	2.0%	1.39 [0.37, 4.40]	
Subtotal (95% CI)	0	2551	13	2308	2.7% 51.4%	0.43 [0.16, 1.20]	- -
Tatal events	150	2001	174	2000	J 1.4470	0.00 [0.07, 1.10]	•
Hotorogonoity Touit= 0.05; Chit= 17.04 df= 14	100 (P = 0.26)	IZ = 100%	174				
Test for overall effect: Z = 0.89 (P = 0.38)	(F = 0.25),	1 - 10%					
Total (95% CI)		5231		5001	100.0%	1.00 [0.85, 1.18]	♦
Total events	324		319				
Heterogeneity: Tau ² = 0.00; Chi ² = 33.65, df = 39	(P = 0.71);	I ² = 0%					
Test for overall effect: Z = 0.05 (P = 0.96)							Eavours exercise Eavours control
Test for subgroup differences: Chi ² = 1.65, df = 1	(P = 0.20)	, I² = 39.4	%				

No increased risk of premature delivery

Traditional concerns about prenatal exercise

- 1) Increase early pregnancy loss;
- 2) Premature delivery;
- 3) Increased core body temperature leading to congenital anomalies;
- 4) Fetal growth restriction

Body temperature and congenital anomalies?

- Hot tub use during embryogenesis early in pregnancy ↑ neural tube defects.
- Maternal core temperature +2.0 degrees Celsius during embryogenesis.
- Exercise increases body temperature.

Impact of pregnancy on thermogenesis?

Improved thermoregulation due to increased plasma volume, decreased vascular resistance and increased skin blood flow.

Figure 2 Temperature during exercise at submaximal workload (mean ± 1 SD; n = 14)

Maternal temperature with exercise

				Mean Difference	Mean Difference
Study or Subgroup	Mean Difference	SE	Weight	IV, Random, 95% Cl	IV, Random, 95% CI
1.4.2 Moderate Intensity					
Clapp, J.F. (1991)	0.00155	0.0349	13.8%	0.00 [-0.07, 0.07]	+ 1
Larsson & Lindqvist (2005)	0.2	0.088	11.7%	0.20 [0.03, 0.37]	_ -
Soultanakis et al., 15 min (1996)	0.298	0.5223	1.6%	0.30 [-0.73, 1.32]	
Soultanakis et al., 30 min (1996)	0.5	0.3974	2.6%	0.50 [-0.28, 1.28]	
Soultanakis et al., 45 min (1996)	0.5	0.3805	2.8%	0.50 [-0.25, 1.25]	
Subtotal (95% CI)			32.5%	0.13 [-0.04, 0.30]	◆
Heterogeneity: Tau ² = 0.01; Chi ² = 7.55, df =	4 (P = 0.11); l ² = 4	7%			
Test for overall effect: Z = 1.45 (P = 0.15)					
1.4.3 Vigorous Intensity					
Baciuk et al. (2008) - CONTROL (19wks)	0.2824	0.2167	6.1%	0.28 [-0.14, 0.71]	I
Baciuk et al. (2008) - CONTROL (25wks)	0.1841	0.1273	9.7%	0.18 [-0.07, 0.43]	+ I
Baciuk et al. (2008) - CONTROL (35wks)	0.274	0.144	9.0%	0.27 [-0.01, 0.56]	
Baciuk et al. (2008) - EX GROUP (19wks)	0.0689	0.1516	8.6%	0.07 [-0.23, 0.37]	
Baciuk et al. (2008) - EX GROUP (25wks)	0.2737	0.1495	8.7%	0.27 [-0.02, 0.57]	I
Baciuk et al. (2008) - EX GROUP (35wks)	0.1688	0.1388	9.2%	0.17 [-0.10, 0.44]	I
Clapp et al. (1987) 20WKS	0.7082	0.1362	9.3%	0.71 [0.44, 0.98]	
Clapp et al. (1987) 32WKS	0.4721	0.1928	6.9%	0.47 [0.09, 0.85]	
Subtotal (95% CI)			67.5%	0.30 [0.15, 0.45]	\bullet
Heterogeneity: Tau ² = 0.02; Chi ² = 13.90, df	= 7 (P = 0.05); l ² =	50%			
Test for overall effect: Z = 3.95 (P < 0.0001)					
Total (95% CI)			100.0%	0.26 [0.12, 0.40]	◆
Heterogeneity: Tau ² = 0.03; Chi ² = 39.37, df	= 12 (P < 0.0001);	² = 70%		-	
Test for overall effect: Z = 3.67 (P = 0.0002)	, , ,,				-1 -U.5 U U.5 1
Test for subgroup differences: Chi ² = 2.16, d	$f = 1 (P = 0.14), I^2 =$	53.8%			Decrease with Exercise Increase with Exercise

Prenatal exercise did not result in hyperthermia.

Davenport et al BJSM 2019

Congenital anomalies

	Exercise		Contr	Control		Odds Ratio	Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	M-H, Random, 95% Cl	
2.4.1 Exercise only								
Ussher, 2015 Subtotal (95% CI)	9	346 3 46	6	348 348	19.5% 19.5%	1.52 [0.54, 4.32] 1.52 [0.54, 4.32]		
Total events	9		6					
Heterogeneity: Not applicable								
Test for overall effect: $Z = 0.79$ (P = 0.43	3)							
2.4.2 Exercise+co-intervention								
Bung, 1993	0	17	1	17	2.0%	0.31 [0.01, 8.27]		
Dodd, 2014	25	1075	14	1067	48.7%	1.79 [0.93, 3.46]	⊢∎ −	
Guelinckx, 2010 - Active	1	65	1	65	2.7%	1.00 [0.06, 16.34]		
Hollingsworth, 1987 - Non Diabetic	0	12	0	8		Not estimable		
Hollingsworth, 1987 - Type 1 Diabetic	1	13	4	21	4.0%	0.35 [0.04, 3.58]		
Jovanovic-Peterson, 1989	0	10	0	9		Not estimable		
Koivusalo, 2016	1	144	3	125	4.1%	0.28 [0.03, 2.77]		
Poston, 2015	5	760	6	751	15.0%	0.82 [0.25, 2.71]		
Rauh, 2013	1	159	0	79	2.1%	1.50 [0.06, 37.36]		
Smith, 2016	0	26	1	24	2.0%	0.30 [0.01, 7.61]		
Subtotal (95% CI)		2281		2166	80.5%	1.16 [0.70, 1.95]	•	
Total events	34		30					
Heterogeneity: Tau ² = 0.00; Chi ² = 5.80,	df = 7 (P	= 0.56); I ² = 0%					
Test for overall effect: Z = 0.58 (P = 0.56	6)							
Total (95% CI)		2627		2514	100.0%	1.23 [0.77, 1.95]	•	
Total events	43		36					
Heterogeneity: Tau ² = 0.00; Chi ² = 6.01, df = 8 (P = 0.65); l ² = 0%								
Test for overall effect: Z = 0.87 (P = 0.38	Eavours exercise Eavours control							
Test for subgroup differences: Chi ² = 0.20, df = 1 (P = 0.65), l ² = 0%								

Minimal evidence. Non-RCT evidence did not support an increased risk of congenital anomalies.

Encourage exercise throughout pregnancy.

Traditional concerns about prenatal exercise

- 1) Increase early pregnancy loss;
- 2) Premature delivery;
- 3) Increased core body temperature leading to congenital anomalies;
- 4) Fetal growth restriction

Why do we care about having a small baby?

- Early studies suggested exercise may result in a decrease in birthweight.
- Redistribute oxygen and nutrients away from baby.
- More likely to be admitted to NICU
- Barker demonstrated small for gestational age was a risk for cardiovascular disease later in life.

Small for gestational age baby

	Experim	ental	al Control			Odds Ratio	Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl	
3.4.1 Exercise only								
14953 - de Oliveria, 2012 - 13 weeks	4	54	3	29	2.0%	0.69 [0.14, 3.33]		
14953 - de Oliveria, 2012 - 20 weeks	4	60	3	29	2.0%	0.62 [0.13, 2.97]		
15148 - Hopkins, 2010	4	47	3	37	2.0%	1.05 [0.22, 5.03]		
15417 - Nascimento, 2011	2	39	1	41	0.8%	2.16 [0.19, 24.85]		
15487 - Price, 2012	4	31	5	31	2.4%	0.77 [0.19, 3.19]		
15952 - Bisson, 2015	0	25	2	25	0.5%	0.18 [0.01, 4.04]	•	
16611 - Nobles, 2015	13	124	10	123	6.5%	1.32 [0.56, 3.14]		
16780 - Renault, 2014	4	125	1	67	1.0%	2.18 [0.24, 19.92]		
18064 - Seneviratne, 2015	4	37	3	37	2.0%	1.37 [0.29, 6.61]		
Guelfi, 2016	0	84	2	85	0.5%	0.20 [0.01, 4.18]	•	
Simmons, 2016	5	87	3	45	2.2%	0.85 [0.19, 3.75]		
Subtotal (95% CI)		713		549	21.8%	0.98 [0.61, 1.57]	•	
Total events	44		36					
Heterogeneity: Tau ² = 0.00; Chi ² = 4.41, df = 10 (P = 0.93); I ² = 0%								
Test for overall effect: Z = 0.08 (P = 0.94)								

• Exercise was not associated with increased risk of a small baby.

Davenport, Meah et al Br J Sports Med 2018

Prenatal exercise reduces the odds of:

Macrosomia by 39%

https://youtu.be/iODWEAISuN4

Pregnancy and Exercise: the effect on your baby!

Birthweight >4000g and risk of overweight

45
 cohort/case
 control
 studies.

• OR = 1.66

• (1.55-1.77)

Reference	<u>OR (95% CI)</u>
Aarup et al., 2008 [68]	2.21 (1.35, 3.62)
Apfelbacher et al., 2008 [69]	1.86 (1.71, 2.03)
Armstrong et al., 2002 [70]	2.08 (1.88, 2.30)
Barta et al., 1965 [72]	6.72 (1.46, 30.98)
Barthel et al., 2001 [73]	1.06 (0.62, 1.81)
Burdette et al., 2007 [74]	2.10 (1.45, 3.04)
Coy et al., 1980 [76]	3.10(1.81, 5.31)
Curhan et al., 1996 [77]	1.49 (1.33, 1.67)
Danielzik et al., 2004 [78]	1.88 (1.39, 2.55)
Dutra et al., 2006 [80]	1.40 (0.78, 2.52)
Gallaher et al., 1991 [81]	2.78 (1.30, 5.97)
Gigante et al., 2008 [83]	1.62 (1.24, 2.12)
Gillman et al., 2003 [84]	1.44 (1.30, 1.60)
He et al., 2000 [85]	1.99 (1.32, 2.99)
Hirschler et al., 2008 [86]	2,55 (1.66, 3.90)
Kersev et al., 2005 [89]	0.85 (0.38, 1.92)
leiser et al. 2009 [90]	1.66 (1.47, 1.88)
(niazewska et al. 2006 [91]	2 26 (0 56 9 16)
aitioon at al. 2001 [02]	1 22 (1 06 1 41)
Innario et al. 2010 [05]	1.22 (1.00, 1.41)
Jardonas at al 2008 (96)	1.56 (1.51, 2.02)
vialobiles et al., 2006 [90]	1.30 (1.30, 1.03)
tentoire et al., 2004 [90]	2.07 (1.17, 2.04)
lonteiro et al., 2003 [99]	2.07 (1.27, 3.37)
wwby et al., 2005 [100]	1.10 (1.06, 1.27)
ndroyd et al., 2010 [101]	1.68 (1.09, 2.59)
2ster et al., 2008 [102]	1.58 (1.31, 1.89)
'adez et al., 2005 [103]	1.26 (0.96, 1.62)
'eter et al., 2008 [105]	1.50 (0.98, 2.29)
Alpel et al., 1995 [107]	2.30 (1.03, 5.14)
Plagemann et al., 1997 [108]	2.41 (1.12, 5.17)
Rose et al., 2006 [110]	1.85 (1.61, 2.12)
Schaefer - Graf et al., 2005 [111]	1.90 (1.04, 3.47)
Seidman et al., 1991 [112]	1.65 (1.47, 1.85)
Sørensen et al., 1997 [113]	1.06 (0.71, 1.57)
Sugihara et al., 2008 [117]	0.66 (0.25, 1.73)
fakatani et al., 1967 [118]	6.45 (0.34, 123.7)
Tomé et al., 2007 [121]	1.84 (1.30, 2.59)
loschke et al., 2002 [122]	1.69 (1.50, 1.90)
furkkahraman et al., 2006 [123]	1.78 (0.97, 3.27)
/erdy et al., 1974 [124]	1.83 (1.27, 2.63)
Vang et al., 2009 [128]	1.81 (1.08, 3.02)
Vei et al, 2007 [129]	1.69 (1.52, 1.88)
Veyermann et al., 2006 [130]	3.15 (1.78, 5.59)
ru et al., 2008 [132]	2.44 (1.38, 4.30)
Zhang et al., 2009 [133]	1.89 (1.70, 2.10)
Pooled	1.66 (1.55, 1.
	, , , , , ,
	-
	0

Increased risk

Decreased risk

Odds ratio (95% Cl) for risk of overweight

Fetal response to acute exercise

- Limited information
- Fetal HR increased with maternal exercise ~6bpm (2-10bpm)
- Incidence of fetal bradycardia was low and unchanged with acute exercise
- Metrics of uterine/umbilical blood flow were unchanged with exercise

www.youtube.com/channel/UCtvzYizIALcs5-RzfHrf5UA

@ExercisePreg

@exerciseandpregnancy

